
2643 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2643-2644,2015

ON THE FELICITOUS APPLICATIONS OF NATURAL LANGUAGE

Muhammad Shumail Naveed, Muhammad Sarim, Kamran Ahsan
Department of Computer Science, Federal Urdu University of Arts, Science & Technology, Karachi, Pakistan

shumail.naveed@fuuast.edu.pk, msarim@fuuast.edu.pk, kamran.ahsan@fuuast.edu.pk

ABSTRACT: Among all languages, the natural languages are the most powerful, proper and logical way of communication.

Natural languages are successfully used in end-user programming, databases, robot controlling and question answering

systems. In this paper we have identified the areas in which the use of natural languages can be exercised and helps in

achieving their prime objectives. Unifying natural languages with decidable computable problems requires different degrees of

efforts. Employing the restricted but expressive subset of the natural language is simple but the use of unrestricted natural

language in any application domain is still an open challenge for the researchers.

Keywords: Natural Language, Natural language programming, Context Free Grammar, Parsers, Semantic Analyzer.

1. INTRODUCTION
Any language that human beings learn from their

surroundings and apply to communicate with one another is

called natural language [1]. Natural languages are employed

to articulate the knowledge, acquaintance and sensations and

to communicate our responses to others. In essence the

natural languages are the most powerful, proper and logical

way of communication. A language is not simply a system

of communication, but also a form of power [2].

Artificial languages are created by humans to communicate

with their technologies. The term artificial language implies

a language specially crafted by humans [1]. Most of the

artificial languages are developed to communicate with

technologies like computers. All programming languages are

artificial languages. Programming languages are developed

by humans for expressing algorithms in computational way

and instructing the machines.

Scientific study of languages is called linguistics. The

detailed studies of languages from linguistics point of view

signify that among all the communicational systems, natural

languages are the most powerful, effective and precise way

of communication, consequently it is viable and attainable to

use natural languages in other computational areas.

This paper illustrates some areas in which the natural

language may be maneuvered with other computable

problems for achieving their sole objectives more

adequately. The paper is organized as follows. The second

section of this paper provides a concise overview of

computing systems in which the natural language is already

being applied. The third section is the core of paper and

provides the areas in which natural language can be

practiced. The forth section describes the conclusion and

followed by the future work.

2. PREVIOUS WORK
The idea of using of natural language in different

computable problem is a not a new idea. Since 1960’s

several notable amalgamations have been introduced.

Natural language programming is a type of programming

language which permits the development of programs by

using the natural language [3]. The use of natural language

in programming appreciably simplify the inherent

complexities of programming and allows the large range of

users to program without understanding the unusual and

fabricated syntax of programming languages.

Pegasus is one a useful natural programming language.

Pegasus is capable to understand natural language and

generate executable program from the input. Pegasus is multi

lingual and available for English and German. The architecture of

Pegasus is modeled in the form of brain. In Pegasus, mind, long

term memory and short term memory are the central elements of

the brain.

Natural Language Computation (NLC) is another natural

programming language used for performing operations on

matrices. Principally NLC is developed for the manipulation of

data store in tables or matrices [4]. Through NLC it is possible for

end users to perform basic matrix operations without

understanding the deep knowledge of computing. In NLC all the

input sentences are imperative and mostly start with imperative

verb. An expressive subset of domain specific English is allowed

in NLC.

Metafor is a natural programming language based on the notion of

writing computer program as telling a story [5]. By using Python,

Metafor automatically generates a program structure from the

input story. Metafor used a meaningful and demonstrative subset

of English. Straightforward depictions of program objects and

their attributes create scaffolding code. Metafor is a valuable

brainstorming tool. During programming in Metafor, when a

programmer types a story, the environment generates and

maintains the side-by-side “visualization” of the user’s story.

A programming language that uses natural language for defining

their commands is called “natural language supplemented

programming” [3]. AppleScript and KlarDeutsch are the best

examples of natural language supplemented programming.

AppleScript is a scripting language and uses natural language, and

its programs highly echoed the structure of programming

languages. KlarDeutsch is developed to instruct machines through

simple sentences of German language.

NaturalJava is an interface that allows the programmer to develop

the program in natural language and translate into java program.

Sundance, PRISM and TreeFace are the core components of the

NaturalJava [6]. Although NaturalJava supports several facilities

of Java, but many are still lacking. There is no support of

declaring arrays in NaturalJava. In a similar way nested classes

are not supported in NaturalJava.

Inform7 is a programming system based on natural language to

developed console based fiction tales.

In [7], Vadas and Curran developed a prototype that accepts

unrestricted English and transforms into the equivalent Python

programming language code.

A natural language interface to a database (NLIDB) is one of a

system that authorizes the user to use natural language for

retrieving the data from the database [8]. IRUS, BBN’s

2644 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2643-2644,2015

PARLANCE, IBM’s LANGUAGEACCESS, LOQUI AND

ENGLISH WIZARD are the commercial NLIDBs.

SHRDLU is another interface based on natural language and

capable to verify commands and make conversations about a

world consisting of blocks on a table [7]. SHRDLU can

answer the questions typed by the user.

Question answering systems are the specialized tools used

for searching and retrieving the information from the textual

document. Questions answering systems are successfully

augmented with natural language. AnswerBus is one a

widely known question answering system which questions in

natural language (Portuguese, English, German, Portuguese,

French, Italian and Spanish) and reply in English [9]. In [10]

the Bengali language based answering systems (BFQA) for

factoid questions is introduced and the initial results of its

evaluation are very encouraging. Other popular question

answering systems are Answerbag, START, Google

Knowledge Graph, Blurtit and AllExperts [11].

SNAP (A Stylized NAtural Procedural language) is a natural

language based procedural language for nonscientists [12].

HANDS (Human-centered Advances for the Novice

Development of Software) is a system developed for

children [13], and facilitates the construction of animations

and simulations which are interactive in nature.

3. APPLICATION DOMAIN
Due to its innate and intrinsic robustness, natural languages

can be used in several problem areas. Following is a concise,

albeit effectual discussion about the areas in which natural

language can be utilized.

3.1 Linear programming

Linear programming (LP) is one of a significant scientific

development of mid-20
th

 century [14]. LP generally deals

with assigning limited resources to competing activities in

an optimal way. In LP all the mathematical functions are

linear functions.

Conventionally the LP problem is solved by analyzing the

problem statement and the development of LP model; this

process is mostly performed manually. A natural language

based system can be developed that performs this process

automatically. Architecture of that system would be pretty

straightforward. System receives the problem statement

(question). The front-end of the system would be comprises

of scanner, parser and semantic analyzer. The front-end

tokenizes the problem statement, verifies its structure and

identifies the decision variables, objective function,

objective function coefficients, constraints coefficients and

nonnegative constraints. Although there are tens of parsers

that might be used in this system, however combinatory

categorical grammar (CCG) parser is more appropriate for

this system. CCG grammar is a type of categorial grammar

in which the function of structures rules is exclusively based

on the category of their inputs [15]. Semantic analyzer of the

front-end verifies the connotation and identifies the

attributes of identifies the decision variables, objective

function, objective function coefficients, constraints

coefficients and nonnegative constraints. Semantic analyzer

also converts the parse tree generated by the CGG parser

into discourse representation structures (DRS) predicates,

this may be accomplished by using ccg2sem (Prolog

package) system.

The back-end of the system receives the input from the front-end

and performs mapping to convert DRS predicates into LP model.

3.2 Game theory

Game theory is a mathematical model and area of study deals with

decision making. Game theory is generally used when two

intelligent opponents with conflicting objectives are striving to

surpass other [16].

In the domain of game theory, the terminology “players” is used

to represent two antagonists (opponents). Each player in a game

has number of strategies or alternatives. Payoff is related with

each pair of strategies which is received by one player from other.

Such games are called two-person zero-sum games. These games

are frequently delineated by payoff matrix. Such matrix is

predominantly constructed by solvers manually. However it is

possible to construct the payoff matrix automatically by means of

natural language supplemented system. Like the natural language

augmented system for LP, here the system is also comprises of

front-end and back-end. The front-end tokenizes the problem,

verifies its structure and denotation. During front-end analysis the

lexemes and their possible denotations are discerned through

morphological and lexical analysis. The parser identifies the

sentence by deciphering the lexicalized text into a tree. CCG or

Tree-adjoining grammar (TAG) based parser are more reasonable

for this system. TAG is tree-rewriting systems [17]. In TAG the

structural attributes of words are encoded as tree structured-

objects of extensive volume. The languages generated by TAGs

are called tree-adjoining languages, and these languages formalize

some strictly context-sensitive languages and included in the class

of the mildy context-sensitive language. Indexed languages

properly contained the tree-adjoining languages and tree-

adjoining languages contained the context free languages [18].

The back-end of the system receives the input from the front-end

and performs mapping by generating the payoff matrix.

3.3 Learners programming language

Technicality and hardness are the inherent features of

programming. Programming essentially entails the number of

specialized dexterities and acquaintance of the structure (syntax)

of particular programming language being used. It is very tedious,

cumbersome and frustrating for beginners to grasp the

grammatical structure of an artificial programming language in

that they are obliged to grasp and comprehend syntactic and

general programming concepts concurrently. Even professional

programmers may be hindered while adapting the syntax of new

programming language. Novice programmers face many problems

while using conventional programming languages. Contemporary

programming languages have myriad many technical details that

are not manifested in natural languages. The use of restricted

natural language can be used in the design of an educational

programming language called the learners programming language.

Learners programming language (LPL) is a pre-programming

programming language which uses very restricted natural

language for writing computer programming in computational

style. Learners programming language can be intervened before

the first programming course and provide the introductory

knowledge to novice students and ultimately help in

understanding the actual programming course. LPL should allow

the students to write programming in a simple, concise and plain

English language, and generates the equivalent high level codes of

contemporary programming language from the input program.

Learners programming language should be the general purpose

programming language and includes the features like: variables,

2645 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2643-2644,2015

data types, console input and outputs, comments,

expressions, conditional structure, iteration structure, one

dimension array, user define functions and basic level disk

I/O. LPL should help the beginners in learning the concepts

of programming languages without engaging them in the

tedious syntax of fabricated programming languages. LPL

also helps the beginners in learning and adapting

contemporary programming languages. The translator for

LPL is highly motivated from the structure of compiler and

high level translators. Translator consisted of five main

phases. The lexical analysis is the first phase which reads the

source program, identifies the lexemes and generates the

equivalent tokens. Finite state automata and regular

expression are the landmark concepts that are used in the

development of lexical analyzer. The syntax analysis is

second phase of translator for LPL which receive the

program in the form of lexemes and tokens from the lexical

analyzer. In spite of using restricted natural language, the

LPL would be too tiny, and its major portion can be

constructed by the context free grammar (CFG). The parser

should generate the parse tree that will be received by the

semantic analyzer which is the third component of the

translator. Semantic analyzer may use the attribute grammar

[19] to verify the connotation of the program and update the

parse tree. During fourth phase the intermediate code

translator convert the program in a form that is highly

amenable for high level translation.

The last phase of the translator is high level translation.

During this phase the representation of the program

instructions written in natural language shall be converted in

high level language. In order to realize this task, the notion

of programmatic semantic [20-21] would be used.

3.4 CASE NOTE ANALYZER
The profession of law is obviously very important and

extremely affects the overall system of any nation or

country. Writing legal case notes is a common activity

performed in this domain. Writing, reading and analyzing

the case notes/reports is indispensable in the study of law

and require high level of creativity, analytical skills, logical

reasoning, perseverance, reading and writing skills. Mostly

these tasks are performed manually, but it is still possible to

develop a restricted case specific application, augmented

with natural language that systematically performs this task

with the proper involvement of technical person(s) through

the dialog box. The function and architecture of case note

analyzer are moderately tortuous and circuitous. From user

point of view, the system should analyze the case, and

identifies the material facts, decisional history, area of law,

identifies the parties, kind of court, judges, holding, ratio per

judge, ratio decidendi and the expected decisions. The

generic architecture of the system almost follows the

previously defined structure of linear programming system.

Through morphological segmentation, the individual words

are identified into morphemes and categorized into relevant

class. For the given case the part-of-speech tagging is

performed. Parser generates the parse tree(s). Probabilistic

context free grammar and probabilistic parsing are more

adequate for this system. Through relation extraction the

association between entities in the note is analyzed. Through

topic segmentation the most of the above facets are

identified. In case of any ambiguity, system may ask the

question from the user. Finally the summary of the case note will

be provided to the user.

3.5 Other areas

There are many other areas in which the use of natural language

makes the system more viable and serviceable. Scripting

programming languages, numerical computations, symbolic

computations, home-appliance interfacing, mobile based health-

care systems, type-setting documents, socket programming, expert

systems and simulation modeling are the few areas in which the

natural language can be used and helps in achieving the actual

objectives.

4. CONCLUSION
Providing communication between humans is the intrinsic goal of

natural language. But due to its solidity and intrinsic

wholesomeness, natural languages can be used in several areas. In

this paper some of these areas are identified and the notions

required for their implementation are discerned at a very high

level of abstractions. The use of restricted subset of a natural

language is somewhat simple or at least efficiently manageable;

however the use of unrestricted natural language in any

computational problem is absolutely very difficult and ultimately

requires more powerful techniques for the handling of ambiguity,

parsing, denotation and translation.

REFERENCES
1. Harris, Marry Dee, Introduction to Natural Language

Processing, Reston Publishing Company, Inc. A Prentice-

Hall Reston. Virginia (1985)

2. Bourdieu, Pierre, Language and Symbolic Power, Cambridge

Polity Press (1992)

3. Knöll, Roman and Mezini, Mira, "Pegasus: first steps toward

a naturalistic programming language", OOPSLA '06

Companion to the 21st ACM SIGPLAN symposium on

Object-oriented programming systems, languages, and

applications, 542-559(2006)

4. Ballard, Bruce W. and Biermann, Alan W., “Programming in

natural language: “NLC” as a prototype”, ACM '79

Proceedings of the annual conference, 228-237(1979)

5. Liu, Hugo and Lieberman, Henry, “Metafor: Visualizing

Stories as Code”, Proceedings of the 10
th

 international

conference on Intelligent user interfaces, 305-307(2005)

6. Price, David and Riloff, Ellen and Zachary, Joseph, and

Harvey, Brandon, “NaturalJava: A Natural Language

Interface for Programming in Java”, Proceedings of the 5
th

international conference on Intelligent user interfaces, 207-

211(2000)

7. Vadas, David and Curran. James R., “Programming With

Unrestricted Natural Language”, Proceedings of the

Australasian Language Technology Workshop 2005, 191-

99(2005)

8. Androutsopoulos, I. and Ritchie, G. D. and Thanisch, P.,

“Natural Language Interfaces to Databases – An

Introduction”, Natural Language Engineering, 1(1): 29-

81(1995)

9. Zheng, Zhiping, “AnswerBus Question Answering System”,

In Proceedings of the Second International Conference on

Human Language Technology Research, 399-404(2002)

10. Banerjee, Somnath and Naskar, Sudip Kumar and

Bandyopadhyay, Sivaji, “Bfqa: A bengali factoid question

2646 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2643-2644,2015

answering system”, In Text, Speech and Dialogue,

volume 8655 of Lecture Notes in Computer Science,

217-224(2014)

11. Lebedeva, Olga, and Zaitseva, Larissa, “Question

Answering Systems in Education and their

Classifications”, In Joint International Conference on

Engineering Education & International Conference on

Information Technology, 359-366(2014)

12. Barnett, Michael P. and Ruhsam, William M., “SNAP:

An Experiment in Natural Language Programming”, In

Proceedings of the Spring Joint Computer Conference,

75-87(1969)

13. Pane, John F. and Myers, Brad A. and Miller, Leah B.,

“Using HCI techniques to design a more usable

programming system”, Proceedings of IEEE Symposia

on Human Centric Computing Languages and

Environments, 198-206(2002)

14. Hillier, Frederick S. and Lieberman, Gerald J., Advance

Praise For Introduction To Operations Research (7
th

Edition), McGraw-Hill Higher Education (2001)

15. Steedman, Mark and Baldridge Jason, "Combinatory

categorial grammar", Non-Transformational Syntax

Oxford: Blackwell, 181-224(2011)

16. Taha, Hamdy A., Operations Research: An Introduction

(8
th

 Edition), Prentice Hall (2006)

17. Joshi, Aravind K. and Levy, Leon S. and Takahashi,

Masako, “Tree adjunct grammars”, Journal of Computer and

System Sciences, 10(1):136-163(1995)

18. Joshi, Aravind K. and Schabes, Yves, “Tree-Adjoining

Grammars”, Handbook of Formal Languages, 69-123(1995)

19. Knuth, Donald E, "The genesis of attribute grammars", In

Attribute Grammars and Their Applications, Springer Berlin

Heidelberg, 1-12(1990)

20. Liu, Hugo and Lieberman, Henry, “Toward a programmatic

semantics of natural language”, IEEE Symposium on Visual

Languages and Human Centric Computing, 281-282(2004)

21. Liu, Hugo and Lieberman, Henry, “Programmatic semantics

for natural language interfaces”, In CHI'05 Extended

Abstracts on Human Factors in Computing Systems, 1597-

1600(2005)

